

Solar PLUS: Physics-Aware Learning Based Scalable Modeling and Analytics for Solar Energy Integration

Qing Shen

Electrical and Computer Engineering

Stony Brook University

10/31/2023

PI: Peng Zhang (SBU)

Co-Pls: Xiangqi Zhu, Barry Mather (NREL), Yuzhang Lin (NYU)

Yue Zhao, Xin Wang, Yifan Zhou (SBU)

Project Goal

Challenges:

Massive integration of solar PV generation makes it prohibitively difficult to perform accurate transient/dynamic analyses:

- Exhaustive physical models of all subsystems
- Astronomical contingencies and solar generation scenarios

Our solution:

Ultra-scalable modeling and analytics of both transient and dynamic behaviors of power grids with solar PVs at all grid levels by exploiting the physics-aware machine learning:

- Accurately represent system behaviors at all levels
- Identify security risks under infinite PV scenarios in grid operations

The proposed project includes three main parts:

- 1) Physical model library
- AI-enabled scalable modeling
- 3) AI-enabled scalable analytics

Physical Model Library

- Goals: a high-fidelity model library of BTM PV and loads based on real-world system information
- Accomplishment: Validated library with 10+ types of load and PV models

Benefits:

- Provide a substantial coverage for the dynamic models of the BTM generations and loads under different simulation scenarios
- Effectively tackle the distribution system datainsufficiency problem by serving as a highfidelity training data synthesizer for data-driven modeling development.

Physical Model Library: Representative BTM Load and PV Compositions

Funded by:

Scalable Subsystem Modelling via Neural ODE

Goal:

Develop an advanced Neural ODE model to accurately track continuous system operational states under missing/noise data.

- Variational Stochastic Differential Networks (VSDN) model:
 - Generates continuous state trajectories from discrete data samples.
 - Generative model: can recurrently predict the future values of the sequence.
 - Inference model: filters out the noise and shares the ODE and drift functions.

Fig 2.2: Block diagram of the filtering inference model used for experiments [1]

^[1] Liu, Yingru, et al. "Continuous-time stochastic differential networks for irregular time series modeling." Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8-12, 2021, Proceedings, Part V 28. Springer International Publishing, 2021.

^[2] De Brouwer, Edward, et al. "GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series." Advances in neural information processing systems 32 (2019)

Experimental Results

Experiments were performed on SETO 1001-bus 14DG microgrid system, developed by SBU team.

Fig 2.2: Topology of the SETO 1001-bus 14-DG system

Table 2.1: Error performance metrics of VSDN model on 1001-bus data

Experimental Results

 Predicted mean of node voltage trajectories of node 632 of 1001-bus data for different scenarios

No missing samples, no noise

30% missing samples, 1% noise

50% missing samples, 5% noise

Funded by:

Al-enabled scalable analytics: Neuro-Reachability

How to verify uncertain dynamics with data-driven system models?

Neuro-Reachability: conformanceempowered reachable dynamics

Experiments and Validation

- Test system: 1001-bus transmission-distribution system
 - 7 distribution grids and 14 IBRs
 - Each IBR has a double-loop droop controller
 - Grid 6 and 7 are modeled by ODE-Net
- Reachable set under 10% uncertainty from each PV.

System frequency PV output voltage

PV output power

PV output voltage

ODE-Net-enabled neuro-reachability conforms with the model-driven reachable sets A data-driven tool for verifying power grid dynamics with both renewable uncertainties and unidentified subsystem models

Al-enabled scalable analytics: Neuro-Awareness

How to track dynamics of the system with unidentified subsystems?

Challenges:

Complete physics model of the whole systems may not always be attainable

Contributions:

Neural dynamic state estimation (Neuro-DSE) for Networked Microgrids with partially unidentified subsystems by integrating ODE-Net into Kalman filters.

Neuro-Awareness: Data-driven dynamic state estimation(DSE)

Funded by:

Experiments and Validation

- Test system: 33-bus microgrid system
 - 5 grid forming based IBRs
 - Each IBR has a double-loop droop controller
 - Microgrid 4 is modeled by ODE-Net
- ODE-Net under 20% uncertainties of DER power input.

Simulation validates the effectiveness of Neuro-DSE under different noise levels

Integrating Learning and Physics based Computation for Fast Online Transient Analysis

- Goal: to accelerate the simulation of full power system transient trajectories.
 - Key: One predictor is trained for each generator.
 Replace the time-consuming dynamic computation of the generators with trained predictors
 - Retain the time-efficient algebraic computation of solving AC-PF
- Key Advantages
 - Scalability: independent complexity
 - No re-training: agnostic to changes
 - Flexible training strategies:
 – joint, local, and singular allowing different trade-offs between offline training complexity and online testing accuracy.

Iteratively alternates between calling all the trained predictors, solve AC-PFs and update inputs collectively.

Performance Evaluation

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

- We simulated 2,460 N 2 contingencies in a 68 bus system, collected the simulated trajectories.
- Excellent performance in both accuracy and computation speed is demonstrated.

TABLE I: Performance Comparison of Training Strategies

Training Strategy	Avg. RMSE	Avg. Relative RMSE	
Joint Local Singular	$\begin{array}{c} 3.631 \cdot \mathbf{10^{-3}} \\ 5.372 \cdot 10^{-3} \\ 8.720 \cdot 10^{-3} \end{array}$	$5.684 \cdot 10^{-2}$	

68-bus 16-generator system.

TABLE II: Computational Efficiency

	Model	Offline Training time [min]	Offline Compute Memory [MB]	Online Compute Time [s]	Online Compute Memory [MB]
_	Singular Local Joint Numerical	229 767 2609	2245 2247 2941	2.16 2.16 2.16 19.9	1545 1545 1545 269

Time [s]

J. Li, Y. Zhao, and M. Yue, "Integrating learning and physics based computation for fast online transient analysis," Proc. IEEE Conference on Innovative Smart Grid Technologies (ISGT), 2023.